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ABSTRACT A forebrain atlas and stereotaxic neurosurgical techniques were 
developed for use in anatomical and behavioral experiments on the green anolis 
lizard (Anolis carolinensis). Green anoles are convenient and robust experimental 
subjects with a rich behavioral repertoire, the social components of which are 
partly under hormonal control. 

The technique and atlas were devised to conduct neuroethological investiga- 
tions of the effect of lesions on species-typical display behavior. The atlas consists 
of 12 transverse sections from an average size adult male. The figures (4-15) are 
based on Nissl material and supplemented with fiber-stained material from ad- 
jacent sections. They appear at the end of the article. Limitations on the accuracy 
of stereotaxic coordinates are discussed and tables of correlative nomenclature 
for principal telencephalic and diencephalic nuclei are provided. 

Among lizards, the diurnal, visually ori- 
ented Iguanids are the most amenable to study, 
and of these, the green anole, Anolis caroli- 
nensis, is the most studied. This species has a 
rich behavioral repertoire, most of which can 
be elicited in seminatural laboratory habitats, 
and it exhibits social activity with distinctive 
displays (B. Greenberg and Noble, '44; Crews, 
'75; Greenberg, '77a) that are partly under hor- 
monal control (Crews, '75). With the use of mi- 
crotechniques, this New World lizard is also 
an excellent subject for combined neurophy- 
siological and neuroanatomical investigations 
(Greenberg et al., '79). To facilitate such re- 
search this report describes the forebrain of A. 
carolinensis in stereotaxic coordinates and pro- 
vides a methodology for the placement of de- 
vices in the brain. 

Valuable reviews of the reptilian forebrain 
have been published by Goldby and Gamble 
('57) and Northcutt ('78), who also provided a 
useful summary of the variation within the 
Lacertilia. An architectonic analysis of a re- 
lated member of the Family Iguanidae, Iguana 
iguana, was provided by Northcutt ('67); and 
a schematic atlas for this species was published 
by Distel ('76). The diencephalon of I. iguana 
was analyzed in detail by Butler and Northcutt 
('73). 

Detailed archetectonic studies on the dien- 
cephalon and midbrain of Anolis carolinensis 
were published in 1933 by Huber and Crosby. 
Twenty years later Armstrong et al. ('53) pub- 
lished on the telencephalon of other species of 

Anolis with special reference to the olfactory 
apparatus, correcting errors made by earlier 
authors (Crosby and Humphrey, '39). Detailed 
descriptions of the preoptic and hypothalmic 
areas ofA. carolinensis were included in a com- 
parative essay by Crosby and Woodburne ('40). 
The anatomy of the cranial nerves was de- 
scribed by Willard ('19) and the cranial motor 
nuclei investigated by Gillaspy ('54). 

An important impediment to functional neu- 
roanatomical studies on lizards is the lack of 
information about normal behavior. Special- 
ized and time-consuming ethological tech- 
niques are required to index their behavioral 
patterns and to ascribe function to these with 
any confidence. This has been partly relieved 
by recent detailed ethograms and behavioral 
inventories (e.g., Brattstrom, '71; Distel, '78; 
Greenberg, '77b) and partial ethograms stress- 
ing thermoregulatory (DeWitt, '71; Greenberg, 
'76; Heath, '65) and social behavior (Crews, '75; 
Greenberg, '77a; Noble and Bradley, '33). 
Learning in lizards was reviewed by Bratts- 
trom ('78) and Burghardt ('77). The behavior 
of A. carolinensis has been described by Crews 
('75), Evans ('36, '38), B. Greenberg and Noble 
('44), Greenberg ('77a), and Noble and Bradley 
('33). 

Anolis carolinensis are small, easy to handle, 
economical to maintain, and are robust sub- 
jects for surgical procedures. They are easily 
captured in the field or readily available from 
commercial suppliers. It is one of the most 
broadly distributed of the anoles, the largest 
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genus of reptiles of the Americas. It is the only 
member of the genus which is native to the 
continental United States and ranges from 
North Carolina to Florida, west to southeast- 
em Oklahoma and central Texas (Conant, '75). 
This species may reach a maximum body size 
(snout-to-vent) of 75 mm. Detailed information 
is available about their biology, ecology, and 
natural history (Gordon, '56). Specimens uti- 
lized in our laboratory are from southern Lou- 
isiana, where they occur in high densities in 
ecotonal areas of the coastal plains (Gordon, 
'56). 

METHODS 
Stereotaxic technique 

A headholder for Anolis carolinensis was 
adapted from a Kopf Small Animal Stereotaxic 
instrument (Fig. 1). The apparatus provides a 
bite plate covered with a thin layer made of 
dental elastic impression material into which 
the lizard's teeth are pressed by a forked clamp 
with a rubber strap stretched between the tines 
as it is lowered over the animal's snout. Ad- 
ditional support is provided by blunt ear-bars 
which are freshly tipped with fast-setting den- 
tal impression material (e.g., light-bodied 

permlastic, Kerr Corp., Romulus, MI) in order 
to avoid injuring the tympanic membrane. Since 
hypothermia is used to obtain anesthesia, the 
instrument is provided with an adjustable tray 
for packing the lizard's body in crushed ice. 

The horizontal reference plane along the same 
line as the edge of the upper jaw is provided 
by the bite plate; anterior/posterior, and lat- 
eral measurements utilize the center of the cor- 
nea of the parietal eye located on the top of the 
head as a zero point (Fig. 2). Measurements on 
five anesthetized individuals indicate that the 
surface of the brain is 0.5 mm below the zero 
point. 

Surgical techniques 
Because of tail autotomy and seasonal var- 

iations in fat stores, snout-to-vent (S-V) length 
is more reliable than weight as an index of size 
and maturity in iguand lizards. Lizards ini- 
tially operated on varied from 59 to 69 mm S- 
V. For consistency in stereotaxic coordinates 
and to minimize relative size effects on behav- 
ioral tests, we came to limit the size of exper- 
imental subjects to 63-65 mm S-V. To conduct 
surgery, a subject was placed in a bed of crushed 
ice for a minimum of 10 minutes. When all 

Fig. 1. Stereotaxic headholder adapted form a Kopf Small 
Animal Instrument. A, crushed ice tray with drain holes for 

cryoanaesthesia; B, snout clamp with rubber strap; C, bite 
plate thinly covered with rubber; D, ear-bar. 
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5 mm. 

Fig. 2. Position of brain in cranium of lizard. Arrow in- 
dicates level of parietal eye used as the stereotaxic zero 
point. 

signs of muscular activity ceased, it was trans- 
ferred to the tray of the head-holder and again 
packed in ice. A sponge beneath a drain in the 
ice tray absorbed melting ice. The upper jaw 
of a lizard was pressed gently into the bite 
plate. The headholder was then adjusted until 

a natural resting posture was obtained and the 
earbars were positioned alongside the tym- 
panic opening. Several drops of fast-setting 
dental impression material were placed be- 
tween the head and earbars and then the bars 
were tightened to within 2 mm of the tympanic 
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opening. The impression material conforms to 
the contours of an individual's head and sets 
in 10 minutes; after surgery it easily peels off. 

Histological techniques 
Lizards were sacrificed by injection with an 

overdose of Nembutal. To flush blood and fix 
tissue, transcardial perfusion of 0.9% saline 
followed by 10% formalin in 0.9% saline was 
performed with a 27-gauge needle connected 
by flexible tubing to a hypodermic syringe. The 
animals were then decapitated, the lower jaws 
removed, and the head skinned and placed in 
10% formalin with sucrose for a t  least 2 days. 
The brains were cut in situ. Prior to  embed- 
ding, a cranium was placed in 5% formic acid 
for 24-30 hours to decalcify, a procedure that 
did not compromise the quality of subsequent 
staining. Heads were embedded in gelatin-al- 
bumin or gelatin and transverse serial frozen 
sections were prepared on a freezing-sliding 
microtome set at 25 or 50 pm. To obtain trans- 
verse sections, the edge of the jaw was exposed 
and lined up with the vertical edge of a drafting 
triangle placed on the track of the microtome 
blade. Trial sections through the snout allowed 
correction for symmetry. 

The atlas figures were prepared from the de- 
calcified head of a 64-mm lizard imbedded in 
gelatin-albumin. Two guide tracks were placed 
beneath the jaw parallel to the horizontal plane 
to provide an independent horizontal reference 
point. Once the cranial vault was revealed, all 
sections were saved. Alternate sections were 
stained with cresyl violet for the Nissl material 
and the Weil stain for myelinated fibers. Sev- 
eral brains were prepared in the sagittal and 
horizontal planes for comparison. For the atlas 
illustrations, the left hemisphere of alternate 
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Nissl-stained sections were photographed 
alongside a mirror-image photo in which the 
principal nuclei were delineated. To represent 
fiber tracts, adjacent Weil sections were pro- 
jected onto acetate sheets overlying the pho- 
tographs of Nissl sections, and drawn in place. 

RESULTS AND DISCUSSION 
Structural variability 

The coordinates of three forebrain points were 
obtained along the anterior/posterior axis of 15 
subjects (body size 63-65 mm) to indicate brain 
variability that might be expected in routine 
procedures (Fig. 3). The data indicate that an 
electrode can be placed in a 0.35-mm structure 
with high reliability. The greater variability 
in the coordinates of the posterior pole of the 
telencephalon was attributed to the relative 
lack of support from adjacent tissue, causing 
mechanical displacement of that portion of the 
brain during handling. 

Limitations on stereotuxic accuracy 
The average size of mature, vigorous males 

in commercial shipments was 60-68 mm. For 
most experimental procedures, males 63-65 mm 
were used. The atlas individual was 64 mm. 

Since the brain grows more slowly than sur- 
rounding cranial tissue (Jerison, '73:28), the 
brain, supported by membranes and cartilage, 
becomes progressively more loosely supported 
within the skull. Thus the natural resting pos- 
ture of the subject in the headholder is impor- 
tant because tension on the spinal cord can pull 
the entire brain caudally within the cranium. 

The anteriorlposterior position of the par- 
ietal eye shifts allometrically caudal as indi- 
viduals grow, but within any given size class 
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may be expected to  be constant (J. Roth, per- 
sonal communication). 

Shrinkage was studied in canary brains af- 
ter a similar perfusion technique, and after 
embedding and staining mounted sections 
(Stokes et al., ’74). Less than 5% variation was 
observed when treated material was compared 
to fresh or perfused unstained material. 

Nomenclature 
Since there is as yet no complete architec- 

tonic study of the brain of Anolis carolinensis 
to guide the identification of telencephalic and 
diencephalic structures, terms were selected 
from recent reports on other lizards in which 
topological and in some cases architectonic in- 
formation was sufficiently clear to allow gen- 
eralization. Where ambiguity as to probable 
homology exists, the least specific term was 
utilized. For example, the nucleus of the lat- 
eral olfactory tract, identified in most lizards, 
is not clear in A .  carolinensis although it is 
likely related to nucleus A1 of Armstrong et al. 
(‘53). On the other hand, nucleus sphericus (NS), 
conspicuous in the posterior dorsal ventricular 
ridge (PDVR) of most other lizards, is repre- 
sented by a very small cell group that is clear 
in the atlas specimen and only three of 14 other 
brains examined. Preliminary retrograde de- 
generation experiments on olfactory and vom- 
eronasal connections in A .  carolinensis indi- 
cate a clear pathway that dissipates in the 
ventral neuropil of the PDVR at the level a t  
which the NS would be expected (Greenberg 
and Switzer, unpublished data). 

The reptilian DVR, the “strio-amygdaloid 

complex” of several authors (e.g., Goldby and 
Gamble, ’57; Armstrong et al., ’53), often has 
its posterior area (PDVR) identified as amyg- 
dala, in which NS is the most prominent struc- 
ture. Some recent authors continue in this con- 
servative but flexible tradition and regard NS 
as one of the cell groups within the PDVR (e.g., 
Northcutt, ’81; Voneida and Sligar, ’79), while 
others have identified PDVR as a distinct nu- 
cleus (Northcutt, ’67) sometimes within a 
“basal” DVR (Balaban, ’78; Ulinski and Pe- 
terson, ’81). Kuhlenbeck (‘77) locates NS within 
a posterior epibasal complex. Because of the 
confusion latent in these alternative uses of 
the term, the Anolis atlas retains PDVR in the 
more conservative sense. In A .  carolinensis and 
other species that lack a distinct sulcus neos- 
triaticus (Ariens Kappers, ’21) or cytological 
criteria (Northcutt, ’78) to indicate the bound- 
ary between ADVR and PDVR, the area is 
identified by a reduced cell density, which be- 
comes obvious caudal to the level of the an- 
terior commissure. 

Correlative nuclear nomenclature of several 
lizard species is provided in Tables 1 and 2 for 
pallial and subpallial structures. The terms in- 
dicate only a few possible ambiguities. The un- 
common designation, “Zone A of the ADVR 
(ZA), has been utilized to identify a distinct 
area on the medial margin of ADVR, distin- 
guished by Northcutt (’78) as a target of an 
ascending auditory pathway in Iguana. The 
“lateral area of the ADVR (ADVR, lat) is sim- 
ilarly unfamiliar and is used here to designate 
the subpallial component of the dorsolateral 
cortex (CxDL), also identified in Iguana 

TABLE 1.  Pallial nomenclature in lizards 

Current usage in 
Anolis carolinensis Armstrong 

et al. (‘53) Northcutt (’67) Northcutt (‘78) Distel (‘76) 
Abbrev. Structure Location Anolia species Iguana iguana Iguana iguana Iguana iguana 

CxD dorsal cortex A0.6-P1.4 dorsal cortex cortex dorsomedialis dorsal cortex, cortex dorsalis 

CxDL dorsolateral A0.6 cortex dorsolateralis cortex dorsolateralis 
divisions C1, C2 

cortex 
CxL lateral cortex 

CXM, Ic medial cortex, 
large-celled 
div. 

CxM, sc medial cortex, 
small-celled 
div. 

DMI dorsomedial 
interwsition 

A0.2-P1.2 piriform 
cortex 

A0.2-P1.6 hippocampal 
cortex 
large-celled 
part 

A0.2-P1.6 hippocampal 
cortex, 
small-celled 
Part 

P0.4-P1.6 

cortex pyriformis lateral cortex cortex lateralis 

hippocampus, pars medial cortex, cortex dorsomedialis 
dorsalis dorsal division 

(C1) 

hippocampus, pars medial cortex, cortex medialis 
dorsomedialis ventral division 

(C2) 

dorsal cortex, 
division C3 
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TABLE 2. Subwllial nomenclature in lizards 

Current usage in 
Anolis carolinesis Armstrung 

et al. 1'53) Northcutt 1'67) Distel 1'76) Northcutt 1'78) 
Abbrev. Structure Loeation Anolis species Iguana iguana Iguana iguana Iguana iguana 

ADVR 

A D w  
lat 

AON 

BNac 

BNhc 

BNst 

NA 1 

NA 3 

NACC 

Ndb 

NDL 
S P  

NS 

NVM 
S P  

PDVR 

Ps 

Ps (lat) 

Ps, lc 

Tub olf 

VMN 

ZA 

anterior dorsal A0.6-P1.2 
ventricular 
ridge 

anterior dorsal A0.4-P0.4 
ventricular 
ridne. lateral area 

anterior olfactory 
n. 

bed n. of the 
anterior 
commissure 

bed n. of the 
hippo cam pal 
commissure 

bed n. of the 
stria 
terminalis 

n. A1 

n. A3 

n. accumbens 

n. diagonal band 

n. dorsolateralis 
of the septum 

n. sphericus 

n. ventromedialis 
of the septum 

posterior dorsal 
ventricular 
ridge 

paleostriatum 

paleostriatum, 
lateral area 

paleostriatum, 
large-celled 
area 

olfactory tubercle 

ventromedial n. 
of the PDVR 

zone A of the 

A0.6 

P0.6 

P0.6 

P0.6 

A0.2-P0.6 

P0.2-P0.6 

A0.2-P0.4 

APo.0 

P0.4-PO.8 

P0.6 

A0.2-P0.6 

P0.6-P1.2 

A0.4-P0.4 

P0.2-P0.4 

APo.0-PO.2 

A0.6-P0.2 

P0.6-P1.0 

PO.2-P1.0 

hypopallium hyperstriatum hyperstriatum 
anterius anterius 

cortex cortex 

[sic] 
dorsolateralis dorsomedialis 

anterior n. olfactorius n. olfactorius 
olfactory n., anterior anterior 
pars lateralis 

n. commissurae n. commissurae 
anterioris anterioris 

n. commissurae n. commissurae 
hippo cam pi hippocam pi 

amygdaloid n.1 hyperstriatum hyperstriatum 
posterius [?I posterius [?I 

amygdaloid n. neostriatum [?I neostriatum [?I 
3 

paleostriatum n. accumbens 
medialis 

n. diagonal 
band 

ventromedial n 
of 
paraterminal 
M Y  

amygdaloid n. 

dorsolateral n. 
2 

of 
paraterminal 
M Y  

n. diagonal 
band of Broca 

n. parolfactorius 
medialis 

n. sphaericus 

n. parolfactorius 
lateralis 

hyperstriatum 
posterius 

paleostriatum paleostriatum 
lateralis, 
small-celled 
Part 

neostriatum 

paleostriatum 
lateralis, 
large-celled 
part 

olfactory tuberculum 
tubercle olfactorium 

amygdaloid n. ventromedial 
4 nucleus 

n. accumbens + 
[ventromedial] 
paleostriatum 

n. diagonal band 
of Broca 

n. parolfactorius 
medialis 

n. sphaericus 

n. parolfactorius 
lateralis 

hyperstriaturn 
posterius 

paleostriatum 

neostriatum 

tuberculum 

n. 
olfactorium 

ventromedialis 

dorsal 
ventricular 
ridge, anterior 
d i V  

n. accumbens 

n. diagonal band 
of Broca 

septal nuclei 

n. sphericus 

septal nuclei. 

dorsal 
ventricular 
ridge, posterior 
div. 

stria t u m 

striatum 

olfactory tubercle 

n. ventromedialis 

sensorv zone A of 
ADVR AD% 
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TABLE 3. Diencephulic nomenclature in lizards 

Current usage in Butler and 
Anolis carolinensis Northcutt Cruce (‘74) 

(‘73) Anolis Tupinambis Distel(‘76) Northcutt (‘78) 
Abbrev. Structure Location carolinensis nigropunctatus Iguana iguana Iguana iguana 

DHN 

DLN 

DMN 

Hab 

LGN 

LHA 

LMN 

LTN 

MN 

NM 

NP 

N Rot 
PHN 

PMN 

PGN 

POA 

SCN 

VMA 

VMH 

VMTN 

dorsal 

dorsolateral n 
hypothalamic n. 

dorsomedial n. 

habenula 

lateral geniculate 
n. 

lateral 
hypothalamic 
area 

lentiform 
mesencephalic n. 

lentiform thalamic 
n. 

mammillary n. 

n. medialis 

P1.0- 

P1.0 
P1.2 

n. dorsolateralis 
hypothalami 

n. dorsolateralis 
anterior 

P1.0- n. dorsomedialis 
P1.2 

P0.8- n. habenularis 
P1.4 medialis [3 

divisions 
recognizedl 

P0.8- n. geniculatis 
P1.2 lateralis [3 

divisions 
recognized I 

P1.4 n. lateralis 
hypothalami 

P1.4 n. lentiformis 

P1.4 n. lentiformis 
mesencephali 

thalami [2 
divisions 
recognized] 

P1.6 

P1.2 n. medialis 

n. periventricularis P1.0- 

n. rotundus P1.2 
posterior P1.4- 

P1.4 

hypothalamic n. P1.6 

premammillary n. P1.2- 

pretectal P1.4 
P1.4 

geniculate n. 
preoptic area P0.2- 

P0.8 

suprachiasmatic n. P0.6 

ventromedial area P1.4 

ventromedial P1.0- 

ventromedial Pl.0- 
hypothalamus P1.6 

n. dorsolateralis 
hypothalami 

n. dorsolateralis 
anterior 

n. dorsomedialis 

n. habenularis [2 
divisions 
recognizedl 

n. geniculatis 
lateralis [2 
divisions 
recognizedl 

lateral 
hypothalamic 
area 

mesencephali 

thalami pars 
plicata 

n. lentiformis 

n. lentiformis 

n. mammillaris [2 
divisions 
recognizedl 

n. medialis pars 
anterior 

n. dorsolateralis 
hypothalami 

n. dorsolateralis 
anterior 
thalami 

thalami 
n. dorsomedialis 

n. habenularis 

n. geniculatis 
lateralis 

n. doraolateralis 
hypothalami 

dorsolateral n. 

dorsomedial n. 

habenular n. [2 
divisions 
recognizedl 

lateral geniculate 
n. 

n. lateralis 
hypothalami 

n. lentiformis 
mesencephali 

n. lentiformis 
thalami [2 
divisions 
recognizedl 

n. medialis 
thalami 

medial n. 

n. periventricularis n. paraventricularis periventricular 

n. rotundus n. rotundus n. rotundus n. rotundus 
n. periventricularis n. posterior 

hypothalami hypothalamic n. 

n. lateralis 
[posterior, hypothalami hypothalami 
ventral] 

n. premammillaris 

n. geniculatus n. geniculatus n. geniculatis n. geniculatus 
pretectalis pretectalis pretectalis pretectalis 

n. preopticus preoptic area [2 n. praeopticus 
divisions 
recognizedl 

preopticus 

suprachiasmaticus 

n. periventricualris 

n. 

area area ventromedialis area 
ventromedialis ventromedialis 

thalami 
n. ventralis n. ventromedialis n. ventralis ventromedial 

hypothalami hypothalami hypothalami hypothalamus 
n. ventromedialis n. ventromedialis n. ventromedialis n. ventromedialis 

thalamic n. P1.2 thalami thalami thalami 

(Northcutt, ’67), that appears to merge with 
ADVR and become less distinct a t  more pos- 
terior levels. This area may be Area C of 
Northcutt (‘78), identified as the possible re- 
cipient of visual information relayed through 
nucleus rotundus. Diencephalic structures are 
named in Table 3. Support for the identifica- 

tion of the suprachiasmatic nucleus, the bed 
nucleus of the stria terminalis, and mammil- 
lary nuclei derives largely from Crosby and 
Woodburne’s report on the hypothalamus (‘40: 
Figs. 47, 51). Although several other telence- 
phalic structures invite comparison with pos- 
sible homologs in other species, the proposal 
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of such hypotheses must await completion of 
detailed architectonic studies. 
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Fig. 4. Level A0.6. 

ADVR anterior dorsal ventricular ridge 
AON anterior olfactory nucleus 
CXD dorsal cortex 
CXDL dorsolateral cortex 

Tub olf olfactory tubercle 
V lat lateral ventricle 
V olf olfactory ventricle 

Figs. 4-15. Transverse sections through the forebrain of 
Anolis carolinensis. Stereotaxic coordinates are in milli- 

meters. Figures were prepared of sections at  0.2-mm inter- 
vals anterior (A) or posterior (PI to  the zero point (AP 0.0). 
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Fig. 5. Level A0.4. 

ADVR anterior dorsal ventricular ridge dml dorsal medullary lamina 
ADVR Oat) anterior dorsal ventricular ridge, lateral It% (dor) lateral forebrain bundle, dorsal peduncle 

CXD dorsal cortex Tub olf olfactory tubercle 
CXM medial cortex V lat lateral ventricle 

area Ps paleostriatum 
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Fig. 6. Level A0.2 
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Fig. 7. Level AO.0. 
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Fig. 8. Level P0.2. 
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Fig. 9. Level W.4. 
ADVR 

area 
ADVR (lat) 

area 
alv alveus 
CXD dorsal cortex 
CXL lateral cortex 
CXM, Ic 
CXM, sc 
DMI dorsomedial interposition 
dml dorsal medullary lamina 
lfb (dor) 
lfb (ven) 

anterior dorsal ventricular ridge, medial 

anterior dorsal ventricular ridge, lateral 

medial cortex, large-celled division 
medial cortex, small-celled division 

lateral forebrain bundle, dorsal peduncle 
lateral forebrain bundle, ventral peduncle 

mfb 
NA1 
NA3 
N Acc 
NDL Sep 
NVM Sep 
opt ch 
POA 
Ps 
P s  (lat) 
V lat 
v I11 
ZA 

medial forebrain bundle 
nucleus A1 
nucleus A3 
nucleus accumbens 
nucleus dorsolateralis of the septum 
nucleus ventromedialis of the septum 
optic chiasm 
preoptic area 
paleostriatum 
paleostriatum, lateral area 
lateral ventricle 
third ventricle 
zone A of the ADVR 



FOREBRAIN ATLAS AND STEREOTAXIC TECHNIQUE FOR ANOLIS 231 

Fig. 10. Level P0.6. 
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Fig. 11. Le 
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,eve1 P1.0. 
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Fig. 13. Level P1.2. 
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Fig. 14. Level P1.4. 
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Fig. 15. Level P1.6 
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