Nonmammalian animal models for biomedical research

Greenberg, N., G. Burghardt, D. Crews, E. Font, R. Jones, and G. Vaughan.  1989

In: Animal Models in Biomedical Research, Avril D. Woodhead, editor.  CRC Press, N. Y. pp 289‑308.

Download from Research Gate

Nonmammalian Animal Models for Biomedical Research

Editor Avril D. Woodhead, D.Se. Associate Biologist Department of Biology Brookhaven National Laboratory Upton, New York

Technical Editor Katherine Vivirito Technical Information Division Brookhaven National Laboratories


Neil Greenberg. Gordon M . Burghardt. David Crews. Enrique Font. Richard E . Jones. and Gerald Vaughan


I . Introduction …………………………………………………………… 290

A . The Ethological Approach ……………………………………….. 290

II.  Chemosensory Aspects of Behavioral Dysfunction ………………………… 290

A . Feeding ………………………………………………………… 292

III . Reciprocal Influences of Physiological Stress and Reproductive Behavior …………….. 292

A . Body Color as an Index of the Physiological Stress Responses ………. 292

IV . Behavioral. Gonadal. and Morphological Sexuality ……………………….. 294

A . Developmental Disorders of Reproductive Function ………………… 295

B . Experience vs . Biology ………………………………………….. 295

V . Models of Ovulatory Cycling …………………………………………… 296

VI . Affective Disorders Involving the Basal Forebrain ………………………… 298

A . Striatal Function in Reptiles ……………………………………… 298

B . Striatal Control of Species-Typical Stereotyped Behavior …………… 298

C . Anatomical Correspondences …………………………………….. 298

VII . Central Dopamine Dysfunction …………………………………………. 299

A . Neurotoxic Effects of MPTP …………………………………….. 299

B . Behavioral Changes Following MPTP Treatment …………………… 300

VIII . Developmental-Communicative Disorders and Learning …………………… 301

IX . Cellular Physiology and Body Color in Anolis carolinensis ………………… 301

A . Hormonal Interactions in Regulating Cell Function …………………. 302

X . Conclusions …………………………………………………………… 303

A . The Evolutionary Perspective …………………………………….. 303

Acknowledgments ……………………………………………………………. 304

References …………………………………………………………………… 304


Reptiles possess considerable interest as exemplars of alternative tactics for solving ecologically important problems of survival and efficient energetics. They also are contemporary representatives of the evolutionary precursors of our own species. But beyond these traditional zoological concerns, recent research informed by the ethological approach to problems of causation indicates that several unique qualities of reptiles may provide models useful for research on a diverse array of problems of biomedical interest. These include developmental, endocrinological, neurological, and cellular aspects of stress-related and affective disorders, feeding, reproductive dysfunction, and even Parkinson’s disease.








1. Lehrman, D. S., Interaction of internal and external environmenlS in the regulation of the reproductive cycle of the ring dove, in Sex a11d  Behavior, Beach, F. A.,  Ed., John Wiley & Sons,  New York, 1965, 355.

2. Hinde,  R. A.,  Interaction of internal and external factors in the integration of canary reproduction, in Sex and Behavior, Beach, F. A., Ed., John Wiley & Sons,  New York, 1965, 381.

3. Crews, D., Integration of internal and external stimuli in the egulation of lizard reproduction, in Behavior and Neurology of Lizards. Greenberg, N. and MacLean, P. D., Eds., National Institutes of Mental Health, Rockville, MD, 1978, 149.

4. White,  N., F., Ethology a11d Psychiatry, University of Toronto Press, Toronto, 1974.

5. McGuire, M. T. and  Fairbaoks, L.  A.,  Erhological Psychiarry, Psychopathology in tlu! Comext  of Evolutionary Biology, Grune & Stratton, New York, 1977, 230.

6. Euler, U.S. and  Folkow, B., The effect of stimulation of autonomic areain  the cerebral cortex upon lhe adrenaline and noradrenaline secretion from the adrenal gland in the cat, Acta Physiol. Scand.,  42, 313, 1958.

7. Matsui, H., Adrenal medullary secretory response to pontine and mesencephalic stimulation in the rat, Neuroendocrinology, 33, 84, 1981.

8. Matsui, H., Ad enocortical secretion in response to diencephalic stimulation in lhe rat, Neuroelldocrinology, 38, 164, 1984.

9. Murphy, J; B. and  Collins,   J. T., Reproductive Biology and Diseases of Captive Repriles, Soc. Stud. Amphib. Rept. Comrib. to Herpetol., Soc. Stud. Amphib. Rept., Oxford, Ohio, 1980, 1.

10. Kallman, F.J., Schoenfeld,  W. A., and  Barrera, S. E., The genetic aspects of primary eunuchoidism, Am. J. Ment. Deflc., 48, 203, 1944.

II. Soules, M.R. and Hammood,C.B.,Female Kallman’s syndrome: evidence for a hypothalamic luteinizing hormone-releasing deficiency, Fertil. Steril.,  33, 82, 1980.

12. Henkin, R.J.P., Schecter, J., Fr1edewald, W.T., Demets, D.L., and Raff, M., A double-blind study of the effects of zinc sulfate on taste and smell dysfunction, Am. J. Med. Sci.,  272, 285, 1976.

13. Burghardt, G. M., Chemical perception in reptiles, in Communication by Chemical Signals, Johnston, J. W., Jr., Moulton, D. G., and Turk, A., Eds., Appleton-Century-Crofts, New York, 1970, 241.

14. Crews, D., Hormonal control of male and female sexual behavior in the garter snake (Thamnophis sirtalis parietalis), Honn. Behav., 7, 451, 1976.                           

15. Crews, D.,  Control  of  male  sexual  behavior  in  Lhe Canadian  red-sided  garter  snake, in Hormones and Behavior in Higher Venebrates, Balthazan, J.,  Prove,  E.,  and Gilles, R.,  Eds., Springer-Verlag, Berlin, 1983, 398.

16. Halpern, M., Nasal  chemical senses  in snakes,   in  Advances in Vertebrare Neuroethology, Ewen, J., Capranica, R.,  and Ingle,  D.,  Eds., Plenum  Press,  New  York, 1983,  141.

17. Halpern, M. and Kubie, J., The  role of  the ophidian  vomerona. al system  in species-typical behavior, Trends Neurosci.. 7,  472,  1984.

18.  Mason, R. and Crews, D.,  Pheromonal  mimicry  in garter  snakes,  in Chemical Signals in Vertebrates. Duval, D. and  Muller-Schwartz, D., Eds., Plenum  Press,  New York,  1986.

19. Burghardt, G. M., Behavioral  and  stimulus  correlates of  vomeronasal  functioning  in  reptiles:  feeding, grouping, sex, and  tongue  use,  in Chemical Signals in Vertebrates and Aquatic Invertebrates, Miiller­ Schwarze, D. and Silverstein, R., Eds., Plenum  Press,  New  York,  1980,  275.

20. Halpern, M., The  organization and  function  of the vomerona. al system, Ann. Rev. Neurosci., 10, 325, 1987.

21. Greenberg, N.,  Exploratory behavior and stress in the lizard Anolis carolinensis, z. Tierpsychol., 70, 89, 1985.

22. Mrosovsky, N. and Sherry, D. F., Animal  anorexias, Science, 207, 837,  1980.

23.  Finger, T.E.and Silver, W. L., Neurobiology ofTaste and Smell, John Wiley & Sons, New York, 1987.

24. Burghardt, G. M., Behavioral  ontogeny  in reptiles:  whence,  whither,  and  why, in The Development of Behavior: Comparative and Evolurionary Aspects, Burghardt, G. M. and Bekoff,  M., Eds., Garland STPM, New York, 1978, 149.

25. Scudder·Davis, R. M. and Burghardt, G. M., Diet and growth  in juveniles  of the garter snakes Tham­nophis sirtalis intemalis  and T. radix radix, Growth, 51 , 74,  1987.

26.  Burghardt, G. M., Goss, S., and ScheU, F. M., Comparison  of earthworm  and fish-derived  chemicals in eliciting  prey attack by garter snakes (Thamnophis), J. Chem. Ecol., 14, 855,  1988.

27. Christian, J. J., Endocrine factors in population  regulation,  in Biosocial Mechanisms of Population Reg­ularion, Cohen, M. N.,  Malpass, R.   S., and Klein,  H. G.,  Eds., Yale University  Press,  New Haven,  CT, 1980, 55.

28. Selye, H., The Stress of Life, McGraw-Hill, New York,  1956.

29.  Selye, H., Srress in Health and Disease, Butterworths, Boston, 1976.

30.  Kiritz, S. aod Moos, H., Physiological effects  of social environments, Psychosom. Med., 36, 96,  1974.

31. Holst, F.,  Renal  failure  as the cause  of death  in Tupaia be/anger exposed  to  persistent  social  stress,  J. Comp. Physiol., 78, 236.

32.  Wirtz, P., Physiological effects  of visual contact  to a conspecific in Blennius plwlis, J. Comp. Physiol., 101, 237,  1975.

33.  Greenberg, N. and Wingfield,  J.,  Stress  and  reproduction:  reciprocal  relationships in,  Reproductive Endocrinology of Lower Vertebrates,  Norris,  D. 0. and  Jones,  R. E., Eds., Plenum  Press,  New  York, 1987, 461.

34.  Crews, D., Psychobiology of reptilian reproduction, Science, 189, 1059,  1975.

35.  Crews, D., Interrelationships among ecological, behavioral and neuroendocrine processes in the reproducri”-e cycle of Arwlis carolinensis and other  reptiles,  in Advances in the Study of Behavior, VoL II, Rosenblaii, J. S., Hinde,  R. A.,  Beer, C. G., and  Busnel,  M. C.,  Eds., Academic  Press,  New York,  1980, l.

36.  Greenberg, N.  and  Crews,  D.,  Physiological ethology  of  aggression   in  amphibians   and  reptiles,  in Hormones and Aggressive Behavior, Svare, D.  B.,  Ed.,  Plenum  Press,  New York, 1983, 469.

37.  Greenberg, N.,  Ethological consideration in  the experimental study  of  lizard behavior,  in Behavior and Neurology of Lizards, Greenberg, N. and MacLean, P. D.,  Eds., NIMH, Rockville, MD, 1978.203.

38.  K1einholz, L.H., Studies in reptilian color changes. III.Control of the light phase and bebavior in isolated skin,  J. Exp. Bioi.,  15, 492, 938a.                                                               ·

39. Greenberg, N., Chen, T., and Vaughan, G. L., Melanotropin  levels  are altered  by acute and chronic social stress  in lizards,  Soc. Neurosc:i. Abstr.,  12, 834, 1986.

40. Anderson, B., Is alpha-MSH deficiency the cause of Alzheimer’s disease?, Med. Hypoth., 19,  279, 1986.

41. Greenberg, N.,  Chen, T., and Crews, D., Social  status, gonadal  state,  and the adrenal  suess response in the lizard, Anolis carolinensis, Horm. Behav., 18, 11, 1984.

42. Leshner, A. I., An Introduction to Behavioral Endocrinology, Oxlord  University Press, New York,  1978.

43. Crews, D., Gustafason, J.E., and Tokarz, R.R., Psychobiology of parthenogenesis in reptiles, in Lizard Ecology, Huey, R.,  Pianka,  E., and Schoener, T., Eds., Harvard University Press, Cambridge, MA,  1983, 205.

44. Shapiro, R. H., Levine, D. C., and Adler, N. T., The  testicular feminized  rae a narurally  occurring model of androgen  independent  brain masculinization, Science, 209, 418, 1980.

45. Crews, D., On the origin of sexual  behavior, Psychoneuroendocrino/ogy. 7, 259,  1982.

46. Crews, D., Functional association  in behavioral  endocrinology , in Masculiniry/ Femininiry: Concepts and Definitions, Reinisch, J. M., Rosenblum, L.A.,and Sanders.S. A.. Eds..Oxford University  Press, Oxford, 1986.

47. Wallch, E.E., Virutamasen, P.,and Wright, K.H.,Menstrual cycle characteristics and side of ovulation in the rhesus monkey, Fertil. Steril.. 24, 715, 1973.

48. Clark, J. R., Dierschke, D. J., and  Wolf, R. C.,  Hormonal regulation of ovarian folliculogenesis in rhesus monkeys. I. Concentration of serum luteinizing hormone and progesterone during laparoscopy and patterns of follicular development during successive menstrual cycles, Bioi. Reprod., 18, 779, 1978.

49. Dukelow,  W. R., Ovulatory cycle characteristics in Maca fascicularis, J. Med. Primatol.. 6, 33, 1977.

50. Hodgen, G. D., The dominant ovarian follicle, Ferril. Steril., 38,281, 1982.

51. Gougeon,  A.and Lefevre, B., Histological evidence of alternating ovulation in women, J. Reprod. Ferrtil., 70, 7, 1984.

52. Goodman, A. L. and  Hodgen, G. D.,  The ovarian triad of the primate menstrual cycle,  Recent Prog. Horm. Rev., 39,  I, 1983.

53. Goodman, A. L. and  Hodgen, G. D., Antifolliculogenic action of progesterone despite hypersecretion of FSH in monkeys, Am. ]. Physiol., 243, E387, 1982.

54. DiZerga, G.S. and Hodgen,G.D., The interovarian progesterone gradient:a spatial and temporal regu.ator of folliculogenesis in the primate ovarian cycle, J. Clin. Endocrinol. Merab.. 54, 495, 19!l2.

55. DiZerga, G. S., Marrs, R. P., Roche, P. C.,  Campeau, J. D.,  and Kling, 0. R., Human granulosa cell secretion of protein(s) which suppress follicular response to gonadotropins, J.Clin. Endocrinol.Metab., 56, 147, 1983.

56. Zeleznik, A. J., Hutchinson, J.S., and Scbuler, H. M., Interference with the gonadotropin-suppressing actions of estradiol in macaques overrides the selection of a single preovulatory follicle, Endocrinology, 117, 991, 1985.

57. Jones, R.E., Control of follicular selection, in The Vertebrate Ovary-Comparative Biology and Evolution, Jones, R. E., Ed., Plenum Press, New York, 1978a, 763.

58. Jones, R.E., Evolution of the vertebrate ovary-an overview, in The Vertebrate OvaryComparative Biology and Evolution, Jones, R. E., Ed., Plenum Press, New York, l978b,  827.

59. Zeleznick, A.J., Scbuler, H.M., and Reichert, L. E., Gonadotropin-binding sites in the rhesus monkey ovary:role of the vasculature in the selective distribution of human chorionic gonadotropin to the preovulatory follicle, Endocrinology, 109, 356, 1981.

60. DiZerga, G.S.and  Hodgen,G.D., Folliculogenesis in the primate ovary, Endocrinol. Rev., 2, 27, 1981.

61. Smith, H. M., Sinelnik, G., Fawcett, J.D., and Jones, R.E., A survey of the chronology of ovulation in anolinc lizard genera., Trans. Kans. Acad.Sci., 75, 107, 1973.

62. Jones,  R. E., Fitzgerald, K., Duvall,  D.,  and  Banker, D.,  On the mechanisms of  alternating and simultaneous ovulation in lizards, Herperologica, 35, 132, 1979.

63. Jones, R. E., Guillette, L. J., Jr., Summers, C. H., Tokarz, R. R., and  Crews, D., The relationship among ovarian condition, steroid honnones, and estrous behavior in Anolis carolinensis, J. Exp. Zool., 227, 145, 1983a.

64. Hamlett, G. W. D., Notes on breeding and reproduction in the lizard Anolis carolinensis, Copeia, 1952, 183, 1952.

65. Andrews, R. M., Oviposiion frequency of Anolis carolinensis, Copeia, 259, 1985.

66. Licht, P., PapkotT, H., Farmer,S., MuUer, C., Tsui, H.W., and Crews, D., Evolution of gonadotropin structure and function, Recent Prog. Horm. Res., 169, 1977.

67. Jones, R.E., Tokarz, R., LaGreek, F., and Fitzgerald, K., Endocrine control of clutch size in reptiles.  VI. Patterns of FHS-induced ovarian stimulation in adult Anolis carolinensis, Gen. Comp. Endocrinol., 30, 101, 1976.

68. Gerrard, A. M., Jones, R. E., and Roth, J,  J., Thecal vascularity in ovarian follicles of different size and rank in the lizard Anolis carolinensis, J. Morpho!., 141, 227, 1973.

69. Licht,  P., Effect of mammalian gonadotropins (ovine FSH and LH) in female lizards, Gen. Comp. En­docrinol., 14, 98, 1970.

70.  Jones, R. E., Gerrard, A. M., and  Roth, J. J., Endocrine control of clutch size in reptiles. II. Com­ pensatory follicular hypertrophy following partial ovariectomy in Anolis caro/inensis, Gen. Comp. Endo­ crinol., 20, 550, 1973.

71.  Jones, R. E., Summers, C. H., Austin, H. B., Smith, H. M., and Gleeson, T.T., Ovarian, oviductal, and adrenal vascular connection in female lizards (genus Anolis), Anat. Rec., 206, 247, 1983.

72. Guilette, L. J., Jr. and Fox, S. L., Effect of deluteinization on plasma progesterone and gestation in the lizard Anolis carolinen. is, Comp. Biochem. Physiol. A, 80, 303, 1985.

73. Jones, R.E., Endocrine control of clutch size in reptiles. IV:Estrogen-induced hyperemia and growth of ovarian follicle in the lizard Anolis carolinensis, Gen. Comp. Endocrinol., 25, 211, 1975.

74. Greenberg, N., A neuroethological study of display behavior in the lizard Anolis carolinensis, Am. Zool., 17, 191, 1977.

75. Crews,  D. and  Greenberg, N., Function and causation of social signals in lizards, Am. Zoo/., 21, 273, 1981. 

76. Greenberg, N., Scott, M., and  Crews, D., Role of the amygdala in the reproductive and aggressive behavior of the lizard, Anolis carolinensis, Physiol. BeluJ v., 32, 147, 1984.

77. Teuber, H. L., Complex functions of basal ganglia, in The Basal Ganglia, Yahr, P., Ed., Raven Press, New York, 1976, !51.

78. Schneider, J.S., Basal ganglia role in behavior: importance of sensory gating and its relevance to psychiatry, Binl. Psychiatry, 19(12), 1 693, 1984.

79. MacLean, P. D., Effects of lesions of the globus pallidus on species-typical display behavior of squirrel monkeys, Brain Res., 149, 175, 1978.

80. Greenberg, N., A forebrain atlas and stereotaxic technique for the lizard, Anolis carolinensis, J. Morphol.174,217, 1982.

81.  Greenberg,  N., MacLean, P. D., and  Ferguson,  L. F., Role of the paleoslriarum in species-typical display of the lizard, Anolis carolinensis, Brain Res., 172, 229, 1979.

82.  Greenberg, N., Font, E., and Switur, R. C., Ill, The reptilian striatum revisited, in The Forebrain in Reptiles: Currem Concepts of Structure and Function, Shwerdtfeger,  W. K. and Smeets, W.  J., Eds., Karger-Verlag, Basel, 1988, 162.

83. Northcutt, R. G.,  Forebrain and midbrain organization in lizards and its phylogenetic significance, in  Behavior and Neurology of Lizards, Greenberg, N. and MacLean, P. D., Eds., NIMH, Rockville, MD, 1978, 11.

84. Baker-Cohen, K. F., Comparative enzyme histochemical observations on submammalian brains, Rev. Anta. Morphol. Exp., 40(7), 17, 1968.

85. Brauth, S. E. and  Kitt, C. A., The paleostriatal system of Caiman crocodilus, J. Comp. Neurol.. 189. 1980.

86. Marshall, C., Hypothalamic monoamines in lizards ( Lacerta), Cell TissU Res., 205, 95, 1980.

87. O’Donohue, T. L. and  Dorsa, D. M., The  opiomelanotropinergic neuronal and endocrine systems, Peptides. 3, 353, 1982.

88. Freed, C.  R. and  Yamamoto,  B. K., Regional brain dopamine  metabolism,  a marker for the speed, direction, and posture of moving animal, Science, 292, 62, 1985.

89.  Iverson,  S. D., Striatal  function and stereotyped  behavior, in Psychobiology of the Striatum, Cools, A. R., Lohman, A. H. M., and Van Den Bcrcken, J. H. L., Eds., Elsevier,  New York, 1972, 99.

90. Zigmond,  M. J., Stricker, E. M., and  Berger,  T. W., Parkinsonism: insights from animal models utilizing neurotoxic agents, in Animal M odels of Demenria, Alan R. Liss, New York, 1987.

91. Marsden, C. D. and  Jenner, P. G.,  The significance of l-mcthyl-4-phenyl-1,2,3,6·tetrahydropyridine, in Selective Neurono.l Death, CIDA Symp.,  126, 239, 19!!7.

92. Langston, J. W. and  Irwin, I., M PTP: current concepts and controversies, Clin. Neuropharmawt. 9, 485, 1986.

93. Kitt, C. A., Cork, L. C., Eideberg, E., Tong, T. H., and  Price, D. L., Injury of catecholaminergic neurons after acute exJ>OSUre to MPTP, Ann. N.Y. Acad. Sci., 495, 730, 1987.

94. de Olmos, J. S., Ebbesson, S. 0. E., and Heimer, L., Silver methods for impregnation of degenerating ax.ons,  in Neuroanotomical TractTracing Methods. Heimer and Robards, Plenum Press, New York, 1981, 117.

95. Font, E., Switzer,  R. C., IU, and  Greenberg, N., MPTP-induced neuropathology and behavior in the lizard Anolis carolinensis, unpublished data, 1988.

96. Barbeau, A., Dallaire,  L., Buu,  N. T., Poirier,  J., and  Rucioska, E., Comparative behavioral, bio­chemical and pigmentary effects of MPTP, MPP •  and paraquat in Rana pipiens, Life Sci., 37, 1529, 1985.

97. Burghardt, G. M., Precocity, play, and the ectotherm-endotherm transition, in Handbook of Behavioral Neurobiology, Vol. 9, Blass, E. M., Ed., 1988, 107.

98. Burghardt, G. M., On the origins of play, in Play in AnimaLr arui Humans.Smith, P. K., Ed., Blackwell Scientific,  London, 1984, 5.

99. Brattstrom, B.H., Learning studies in lizards, in Behavior and Neurology of lizards, Greenberg, N.and MacLean, P. D., Eds., NIMH, Rockville, MD, 1978, 173.

100. Burghardt , G. M., Learning processes in reptiles, in Biology of the Reptilia, Vol. 7, Gans, C. and Tinkle, D., Eds., Academic Press, New York, 1977, 555.

1 01.  Burghardt, G. M., The ontogeny, evolution, and stimulus control of feeding in humans and reptiles, in The Chemical Senses and Nutrition, Kare, M. R. and Maller, 0., Eds., Academic Press, New York, 1977, 253.

102. Bagnara, J. T., Taylor, J. D., and  Hadley,  M. E., The dermal chromatophore unit , J. Cell Biol ., 38, 67, 1 96!1.

103. Weber,  W., Photosensitivity of chromatophores,  Am.Zool., 23, 495, 1983.

104. Vaughan,  G. L.,  Photosensitivity in the skin of the lizard , Anolis carolinensis. Photochem. Photobiol..

49, 109,  1987.

105. Wolken, J. J. and Mogus, M. A., Extmocular photosensitivity, Photochtm. Photobiol.. 29, 189, 1979.


Unsupported image type.

106. Lavker, R. M. and  Kaidbey,  K.  H.,  Redistribution of  melanosomal complexes within keratinocytes following UV-A irradiation: a possible mechanisms for cutaneous darkening in man, Arch. Dermato/., 272,

215, 1982.

107. Sharpe, R. J., The low incidence of multiple sclerosis in areas near the equator may be due to ultraviolet light induced suppressor cells to melanocyte antigens, Med. Hypoth., 19, 319,  1986.

108. Vaughan, G. L. and  Tallent, M. K.,  Pigment movement associated with the dermal photic response is inhibited by 8-bromo-cOMP, Photochem. Photobiol., 1988, 47.

109. Hadley, M. E. and  Goldman, J. M., Physiological color changes in reptiles, Am. Zoot., 9, 489, 1969.

110. Tilders, F.H.H., van Delft, A.M.L., and Smelike, P.G., Reintroduction and evaluation of an accurate, high capacity bioa say for melanocyte stimulating hormone using the skin of Anolis carolinensis in vitro, J. Endot,;rinol.. 66, 165, 1975.

I I L  Vaughan, G. L. and Greenberg, N., Propranolol, a beta-adrenergic antagonist, retards response to MSH

in the skin of Anolis carolinensis, Physiol. Behav., 40, 555, 1987.

112. Burghardt, G. M.and Rand, A. S., Eds.,iguanas of the World: Their Behavior, Ecology, and Con­

servation, Noyes Press, Park Ridge, NJ, 1982.

113. Frye, F. L., Biomedical and Surgical Aspects of Captive Reptile Husbandry. Veterinary Medicine Pub­

lishing, Edwardsville, KS, 1981.

114. Hailman, J.P., Homology: logic, information, and efficiency, in Evolution, Brain, and Behavior: Persistent

Problems, Masterton, R. B., Hodos, W., and Herison, H., Eds., Lawrence Erlbaum, Hillsdale, NJ, 1976,


115. Greenberg, N., unpublished data.

116. Gans, C., Ed., Biology of the Reptilia, Vols. I to 13, Academic Press, New York, 1969-1982; Vols.

14 and 15, John Wiley & Sons,  New York, 1985; Vol. 16, Alan R. Liss, New York, 1988